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• We evaluated 2880 quadrats from 6 to
120 m to identify high coral cover com-
munities.

• 20 out of 64 mesophotic studied sites ex-
hibited higher coral cover than expected.

• Coral hotspots reached 81 % at 40 m,
74.5 % at 60 m, 53 % at 90 m or 42 % at
120 m.

• Hotspots are more likely in hard benthos
with steep-moderate slopes.

• Hotspots are unlikely on gentle slopes
with sediments and rubble or vertical
slopes.
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The rapid decline of shallow coral reefs has increased the interest in the long-understudied mesophotic coral ecosys-
tems (MCEs). However, MCEs are usually characterised by rather low to moderate scleractinian coral cover, with
only a few descriptions of high coral cover at depth. Here, we explored eight islands across French Polynesia over a
wide depth range (6 to 120m) to identify coral cover hotspots at mesophotic depths and the co-occurrent biotic groups
and abiotic factors that influence such high scleractinian cover. Using Bayesian modelling, we found that 20 out of
64 of studied deep sites exhibited a coral cover higher than expected in the mesophotic range (e.g. as high as
81.8 % at 40 m, 74.5 % at 60 m, 53 % at 90 m and 42 % at 120 m vs the average expected values based on the
model of 31.2 % at 40 m, 22.8 % at 60 m, 14.6 % at 90 m and 9.8 % at 120 m). Omitting the collinear factors light-
irradiance and depth, these ‘hotspots’ of coral cover corresponded to mesophotic sites and depths characterised by
hard substrate, a steep to moderate slope, and the dominance of laminar corals. Our work unveils the presence of
unexpectedly and unique high coral cover communities at mesophotic depths in French Polynesia, highlighting the
importance of expanding the research on deeper depths for the potential relevance in the conservation management
of tropical coral reefs.
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1. Introduction

The unprecedented coral loss due to climate change (Hoegh-Guldberg
et al., 2007; Hughes et al., 2017) triggered global efforts to find and
conserve the most preeminent coral-dominated reefs (Beyer et al., 2018;
Cinner et al., 2016). With the advance of new technologies (Pyle, 2019),
new research emerged in extreme and marginal coral reef environments to
identify resistant and resilient coral species, high coral cover communities
for conservation (Camp et al., 2018), and explore the mesophotic zone
(Loya et al., 2019). As a continuation of shallow coral reefs, Mesophotic
Coral Ecosystems (MCEs) occur between 30 and 150mdepths, characterised
by benthic communities of low to medium coverage of light-dependent
scleractinian corals (Ginsburg, 2007; Puglise et al., 2009). However, excep-
tionally high coral cover at mesophotic depths (from 40 % to >90 % be-
tween 60 and 120 m) has been described in a few reef locations since the
early 1970s (Bridge et al., 2012; Eyal et al., 2016; Hoeksema et al., 2017;
Hopley et al., 2007; Kahng et al., 2010, 2012, 2014; Kinzie and Robert,
1973; Sánchez, 1999; Zlatarski, 2007, 2018; Zlatarski and Estalella, 1982),
triggering questions about the potential environmental conditions (other
than light, e.g., temperature, geomorphology) and benthic interactions
(i.e., competing for space) promoting such reefs communities (Chadwick
and Morrow, 2011; Done, 2011; Kahng et al., 2019; Sherman et al., 2019).

Despite increasing interest in MCEs (Bongaerts et al., 2019; Pyle and
Copus, 2019), little is known about the regional variability of the cover
and composition of MCEs, and the biotic and abiotic factors driving the
vertical distribution of mesophotic organisms (Kahng et al., 2019;
Sherman et al., 2019). Scleractinian corals and other photosynthetic taxa
like macroalgae are predicted to decrease in diversity and abundance
over depth following light-irradiance attenuation (Gordon, 1989; Kahng
and Kelley, 2007; Muir and Pichon, 2019; Spalding et al., 2019). In
contrast, heterotrophic or non-photosynthetic taxa such as sponges,
azooxanthellate octocorals (particularly gorgonian) and antipatharians
are expected to increase their abundance with depth (Beaman et al.,
2016; Benayahu et al., 2019; Bo et al., 2019; Bridge et al., 2012; Sanchez
et al., 2019). A trade-off between the levels of light-irradiance, the slope
of the seafloor, and the transport and accumulation of sediments has been
hypothesised to provide suitable conditions for scleractinian corals to thrive
inMCEs (Appeldoorn et al., 2016; Bridge et al., 2011; Englebert et al., 2017;
Liddell et al., 1997; Liddell and Ohlhorst, 1988; Sherman et al., 2010,
2019). However, the nature of this environmental trade-off and the hierar-
chy and ranges of these variables to generate such suitable conditions for
high coral coverage remain largely unexplored.

While MCEs are considered biodiversity hotspots (Muir et al., 2018;
Pérez-Rosales et al., 2022) with a potential role as short-term thermal
refuges (Baird et al., 2018; Frade et al., 2018; Giraldo-Ospina et al., 2020;
Muir et al., 2017; Pérez-Rosales et al., 2021) and/or larval sources for dam-
aged shallow reef areas (Bongaerts and Smith, 2019; Montgomery et al.,
2021), they have been traditionally overlooked in conservation manage-
ment efforts due to logistical and cost challenges. Instead, these are mainly
focused on shallow reefs (Beyer et al., 2018; Cinner et al., 2016; Kuempel
et al., 2021; Souter et al., 2021). To advance coral reefs' conservation strat-
egies that allow consideration ofMCEs and their functional roles, it is essen-
tial to decipher the environmental trade-off promoting suitable habitats for
thriving mesophotic scleractinian reefs. Here, we identify high coral cover
‘hotspots’ acrossMCEs in French Polynesia and evaluate the role of environ-
mental factors in determining coral cover and major benthic communities
over a wide depth range.

2. Material and methods

Wide-depth-range benthic surveys were conducted on the fore reefs of
three archipelagos and eight islands of French Polynesia between August
2018 and September 2019 (Fig. 1a). Considering navigation and technical
diving safety, two random sites were selected at each island to collect 30
random photo-quadrats (0.75 × 0.75 m) from line transects at 6, 20, 40,
60, 90 and 120 m depth, resulting in 2880 quadrats and a total area of
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1620 m2. Photo-quadrats were taken using mixed-gas closed-circuit
rebreathers and a Nikon D810 camera in Nautican Housing, with 16 mm
lens, 37.09-pixel high-definition resolution and Keldan videolights. The
relative cover of each benthic group was quantified and identified to the
maximum taxonomic resolution possible in 75 stratified random points
per quadrat (Roelfsema et al., 2021; Van Rein et al., 2011) using the soft-
ware “Photoquad” (Trygonis and Sini, 2012). Taxonomic identifications
were grouped in the following biotic categories: (a) branching coral,
(b) massive coral, (c) encrusting coral, (d) solitary and free-living colonial
coral, (e) laminar coral, (f) Halimeda spp. as calcifying macroalgae,
(g) fleshy macroalgae, (h) crustose algae, (i) crustose coralline algae
(CCA), (j) gorgonians, (k) sponges, (h) hydroids, and (i) antipatharians.
Light-dependent organisms from the order Scleractinia (Sup. Table 1)
were considered as ‘coral’, except for massive and encrusting Millepora,
which were assigned to “massive coral” or “encrusting coral”, respectively,
due to their similar ecological role to scleractinian corals. Soft corals and
other sessile invertebrates were not separated into higher taxonomic groups
for the current analysis (Sup. Table 2). Points falling on abiotic categories
(except for turf) were classified into hard-fixed, soft sediment and rubble.
The total percentage of coral coverwas calculated as the relative abundance
of the sum of all scleractinian-coral points.

Only environmental parameters measured in situ and varying over the
depth gradient were considered in the analysis (i.e., constant variables
such as coordinates, coast orientation, island geomorphology, annual sea
surface temperatures and bleaching history were excluded). At each
depth, Photosynthetically Active Radiation (PAR) and temperature were
recorded for at least 48 hwith a 5min interval with DEFI2-L JFEAdvantech
light-irradiance loggers andHOBOWater Temperature Pro v2 Data loggers,
respectively. Conductivity-Temperature-Depth (CTD) profiles (Valeport
Midas) were used to validate and fill missing temperature gaps. To account
for different deployment times, we normalised light and temperature data
to their respective 6 m value (“surface value,” i.e., shallowest sampling
depth) (Kahng et al., 2019), obtaining light relative index and temperature
relative index. Although these relative values decreased the variations
between deployment times, these were still subjected to unavoidable
seasonality and daily differences between the registered times across
locations. Temperature variability at each site and depth was estimated as
the difference between the highest and lowest temperatures during the
registered time. Bathymetric reef slope profiles were reconstructed from
divers' visual estimates at each site and depth and were complemented
with visual assessment in photo-quadrats and reef scape panoramic photo-
graphs. Following Englebert et al. (2017) and Sherman et al. (2019), reef
slopes were categorised as (a) ‘Gentle’, from subhorizontal shelves to up
to 30°; (b) ‘Moderate’ ~ from 30° to 50°; (c) ‘Steep’, – from 50° to 70°; and
(d) ‘Wall’,>75° slope. Dominant substrate type (‘hard-fixed’, ‘soft-sediment’
and ‘rubble’) was determined from quadrats' analysis.

Two Bayesian Regression Models (package brms, Bürkner, 2017, 2018)
were tested to explore the relationship between coral cover and depth. The
first model was used to identify outliers of high coral cover, i.e., values out-
side the expected distribution by the model. The second model was used to
estimate the likelihood of coral cover according to the variability of envi-
ronmental variables across the depth gradient. For both models, we used
a binomial regression family considering an intercept for the fixed factor
and a random intercept for “site”, and we estimated coral cover as the pro-
portion of identified points falling on a scleractinian coral out of the total
number of points (i.e., number of successes for each trial, standardised by
the total number of points). The first model was a null model exploring
coral cover over depth and converged (R2 = 0.48) with two chains of
4000 iterations after 1000 iterations warm-up for each chain. The posterior
samples were used to define the sites and depths on which coral cover was
above or below the Expected Values of the Posterior Predictive Distribution
(i.e. positive and negative outliers, respectively; Sup. Fig. 1). Based on sim-
ilar studies applying this approach (Cinner et al., 2016; Edmunds, 2021;
Parravicini et al., 2014), positive outliers were named as ‘hotspots’ of
coral cover in the mesophotic zone (Sup. Box 1), whereas negative outliers
as ‘coldspots’ (Sup. Box 2).



Fig. 1.High scleractinian coral cover ‘hotspots’ (positive outliers). (a) Map of French Polynesia detailing the study locations by islands. (b) Scleractinian coral cover profiles
over depth across locations. ‘Hotspots’ outliers from the null expected distribution are indicated with arrowheads, roman numbers and asterisks (see model in Sup. Fig. 1 and
correlations over depth in Sup. Fig. 2). (c) Example of ‘hotspots’ positive outliers [I*. Raroia S1 at 40 m. II*. Makatea S2 at 60m. III*. Gambier S2 at 90 m. IV*. Gambier S2 at
120 m]. Top 10 outliers and their descriptions are displayed in Sup. Box 1.
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The second model explored the relationship between coral cover and
the environmental variables, including their interaction with depth. This
model converged (R2 = 0.62) with two chains of 4000 iterations after a
1000 iterations warm-up for each chain. To evaluate the effects of the envi-
ronment at each depth, the conditional effects were used to measure the
posterior likelihood of scleractinian coral as the proportion of successes
for each trial standardised by the total number of points (i.e., equivalent
to coral cover), considering the interaction of the environmental predictors
at each depth. The data was standardised, and to compare the numerical
environmental predictors across depth, these were also scaled using condi-
tional effects. The relative index light (correlated with depth) and the rela-
tive temperature (almost invariant along the depth gradient)were excluded
from the model to avoid collinearity and increase the sensibility of other
environmental variables.

Joint species distribution models were used to explore how environ-
mental variables determined the cover of individual benthic categories
across the depth gradient. This approach allows identifying the environ-
mental variables correlated with the cover of individual species while
accounting for potential biotic interactions between species (Warton
3

et al., 2015). Generalised joint attribute modelling was run with the pack-
age GJAM (Clark et al., 2017) to study the co-occurrence between multiple
species by building a network of correlations between benthic groups and
in response to environmental parameters. This approach uses a hierarchical
probit regression to combine habitat modelling with community ecology
providing inference on sensitivity to input variables and the interactions
between species. For this analysis, the cover of the 13 above-described ben-
thic groups (i.e., breaking down coral cover into the different morphology
forms) was modelled by ‘depth’ and the most important environmental
factorial predictors, ‘bathymetry slope’ and ‘dominant substrate’ (qmatrix).
We displayed the positive, neutral and negative correlations of our benthic
groups by similarities in their responses to each benthic group (s) (co-exis-
tence) and the environmental predictors (q). The overall sensitivity of coral
cover to depth changes (i.e. grouping scleractinian coral morphologies) was
also evaluated with the same approach.

Spatial (across sites) and across depths differences in the structure of
benthic communities, scleractinian coral cover and coral morphologies
were evaluated using tests of homogeneity of variances (BETADISPER),
permutational analysis of variance (PERMANOVA, blocked by quadrat)
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and pairwise analyses (PERMUTEST) with 999 permutations using the
package vegan (Oksanen et al., 2019).We ran principal component analyses
with the packages Ade4 and FactoMineR (Dray and Dufour, 2007; Lê et al.,
2008). All analyses are conducted with R Studio (Version 1.3.959; R Core
Development team 2013) and the necessary data and scripts to replicate
our analyses are available at: www.github.com/gonzaloprb/
Cover_with_Depth.

3. Results

Thirty-one percent of the studied sites (20 out of 64) within the
mesophotic range (40–120 m) harboured a higher scleractinian coral
cover than the expected posterior predictive distribution of the null
model at each depth (Fig. 1b and Sup. Fig. 1), with some of these ‘hotspots’
showing higher coral cover at mesophotic depths than their shallow coun-
terparts, e.g. Raroia Site 1 (S1) at 40 m (coral cover, 81± 7.7%, s.e.), Bora
Bora sites at 60 m (64.7 to 68 %), Makatea S2 at 60 m (74.5 ± 3.1 %) and
Gambier S2 at 90 and 120 m (52.8± 5.1 % and 42 ± 4.2 %, respectively)
(Fig. 1 and Sup. Fig. 1). While Moorea and Tahiti presented a sharp
decrease in coral cover below 40 m (from ~30 % to ~10 % at 60 m to
<3 % at 90 m), other islands, such as Tikehau, Rangiroa and Raroia, exhib-
ited a relatively high coral cover (18 to 43 %) from 6 m and 20 m to 60 m.
The highest coral cover at the deepest depths was observed in Makatea and
Gambier islands (Fig. 1b; Sup. Fig. 2; i.e., top-right of the graph), with
Makatea exhibiting over 30% of coral cover from 6m to 90m, and only de-
creasing to ~2 % at 120 m; and Gambier Islands (particularly in site 2),
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with >40 % coral cover across the depth range from 6 to 120 m (except
at 60 m).

The overall structure of the benthic communities significantly changed
across the depth gradient despite the high variability across sites
(PERMANOVA, p < 0.001 for both benthos and scleractinian coral cover).
Across sites, the highest variability in benthic community structure was
observed at 40 m (BETADISPER: p < 0.001, average distance to centroids
0.36 at 40 m vs 0.29 at 6 m, 0.31 at 20 and 60 m, 0.3 at 90 m and 0.29 at
120 m) despite 40 m showing similar scleractinian coral cover (20–50 %
coverage across sites, Fig. 1b). In general, we found that coral cover tended
to decrease along the depth gradient (Sup. Fig. 1), despite the spatial vari-
ability across locations (pairwise tests, p < 0.001). However, we found no
correlation between individual depths on scleractinian coral cover, except
for the communities between 90 and 120 m (p < 0.05), where the cover
was generally lower (<25 %, Fig. 1b and Sup. Figs. 1 and 2). Thus, within
sites, the coral cover at a particular depth seems to be independent of the
remaining depths along the depth gradient (Fig. 2b and 3, and Sup. Fig. 2).

The light relative index (negatively correlated with depth, Cor. test,
−0.85, p < 0.05) followed by the type of substrate and the gradient slope
were the most influencing predictors for the likelihood of high coral cover-
age with increasing depth (Fig. 2). Based on the second (full) model (R2 =
0.62), the likelihood of coral cover was lower at deeper depths (negative
β slope, upper Confidence Interval (CI) 0.003), displaying some depths at
sites as exceptions, the ‘hotspots’. Hard-fixed substrates with steep-to-
moderate slopes were more likely to harbour scleractinian coral cover at
deeper depths than other substrates and slopes. Moderate and steep slopes
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maintained the likelihood of coral cover along the depth gradient. In con-
trast, the high likelihood of coral cover in gentle slopes became lower
than the observed for moderate slopes from 40 m and deeper, and even
lower than walls below 90m depth. Compared to hard substrates, sediment
and rubble benthic substrates had a lower likelihood of harbouring coral
cover at deeper depths (negative slope and negative 95 % CI). Below
60 m depth, the likelihood of coral cover on soft and rubble dominant
substrates was nearly non-existent. The coral cover was poorly predicted
by other environmental variables. For example, the high-temperature vari-
ability (i.e., increasing over depth) had a negative effect on the likelihood of
coral cover (negative slope with a negative 95 % CI), whereas the low-
temperature variability (i.e., frequently observed in shallow waters) main-
tained the likelihood of coral cover along the depth gradient. The relative
temperature was constant along the depth gradient and had no effect over
depth, with differences of <1 °C in most locations of the Society and
Tuamotu, and the highest difference (4 °C) between 6 and 120 m in the
Gambier Islands (Sup. Fig. 3).

Breaking down the scleractinian cover into coral morphologies, we
found a general dominance trend over depth, with branching corals show-
ing higher cover at shallow reefs, laminar corals dominating at deeper
depths, and the highest diversity of coral morphologies at 40 m (Fig. 3
5

and Sup. Fig. 4, BETADISPER: distance to centroids 21.76 at 40 m vs
4.47–19.2 at other depths). The high coral-cover ‘hotspots’ at MCEs were
either dominated by monotypic stands of laminar corals or by multiple
coral forms (Sup. Box 1 and 2). Monotypic stands at 40 mmainly consisted
of Pachyseris “speciosa”; deeper at 60–90 m, of Leptoseris solida showing
diverse sizes across locations (e.g. in Makatea, sizes could reach up to
2000 cm2); and at 90 and 120 m, of large thin plates of Montipora spp.
(e.g. in Gambier, sizes could reach 2500 cm2).Whenmesophotic reefscapes
were not monotypic stands, encrusting corals were the most common coral
form (e.g., Pavona varians, Leptoseris incrustans, Leptoseris myscetoseroides,
Leptastrea spp.), although other coral morphologies, such as massive Porites
spp. and branching Pocillopora spp., were occasionally present with covers
varying between 1 and 26 % in upper mesophotic depths (40–60 m). At
the deepest depths (>100 m), only small and thin laminar coral colonies
(≤20 cm2) of Leptoseris hawaiiensis, Leptoseris scabra, Leptoseris fragilis,
Echinophyllia aspera and Oxypora echinata were found. Contrary to the
‘hotspots’ of coral cover, ‘coldspots’ were mainly dominated by CCA and
sponges (average cover across sites of 7.23 ± 1.8 % and 9.09 ± 1.7 % at
90 m and 3.83 ± 0.9 % and 11.8 ± 2.1 % at 120 m, respectively),
and when characterised by negative slopes, high sediment and bare fixed
substrate, ‘coldspots’ presented coverage of gorgonians, hydroids and
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antipatharians of up to 3.64 ± 1.3 %, 3.51 ± 0.6 %, and 0.76 ± 0.5 % at
90 m and 7.02 ± 1.6 %, 5.6 ± 1.3 % and 2.44 ± 0.7 % at 120 m, respec-
tively (maximum cover across sites, see Sup. Fig. 5, Sup. Tables 1, 2).

Based on the benthic groups co-occurrence over depth, shallow depths
were characterised by branching and massive corals and macroalgae
Halimeda spp. (positive correlations within the shallow group, Fig. 4 and
Sup. Figs. 6 and 7), whereas at deeper depths by laminar corals co-
occurring with gorgonians, antipatharians, and sponges (positive correla-
tions within the deep group). Co-occurrence of deep laminar corals and
other coral morphologies at shallow depths had a negative correlation.
CCA and crustose algae showed mostly a neutral correlation across depth,
although the latter one showed a higher sensitivity towards the deep
group. On the other hand, CCA, and encrusting and solitary corals, were
grouped in a third cluster with intermediate sensitivity, although these
two coral morphologies had a slightly higher correlation with the shallow
group (Sup. Fig. 6b). Overall, we found that each coral form benefited
from different environmental conditions and laminar corals dominated at
lower mesophotic depths (Sup. Fig. 7). Regarding the correlations between
distinct benthic groups and environmental predictors, we found that soft
sediment sandy substrate was negatively correlated with scleractinian
corals but favoured the occurrence of gorgonians and hydroids (Fig. 4b).
On the contrary, rubble favoured encrusting and solitary corals (fungiids)
while negatively correlated to gorgonians and hydroids. Steep or vertical
slopes favoured laminar corals, whereas a gentle slope the presence of
branching corals.

4. Discussion

We identified 20 ‘hotspots’ with a higher scleractinian cover than
expected for the depth across the French Polynesia MCEs. Light and depth
(co-variables) mainly explained the differences in community structure,
benthic and environmental co-occurrence, and the dominance of certain
scleractinian morphologies over depth. Following the influence of light-
depth covariance (also previously reported by Kahng et al., 2019;
Laverick et al., 2020), the substrate type and the slope inclination were
key variables on the environmental trade-off for the likelihood of high
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scleractinian cover, being hard substrate and moderate/steep slopes
(30 to 70°) the most common substrate for positive outliers (13 out of
20 ‘hotspots’). Conversely, ‘coldspots’ or low-cover sites were associated
with vertical/negative slopes and gentle slopes with substrates mostly
characterised by soft sediment and rubble favouring the presence of gorgo-
nians, hydroids and sponges. Our results expand on previous observations
of the positive correlation between the scleractinian cover and hard-fixed
substrates (e.g., limestone; Hopley, 1982; Liddell and Ohlhorst, 1988;
Englebert et al., 2017; Pyle and Copus, 2019) and the negative correlations
with sediment and rubble (Appeldoorn et al., 2016; Bridge et al., 2011;
Hubbard, 1986; Perry, 2007; Sherman et al., 2016, 2019), suggesting the
slope inclination as a potential compensatory variable for the light decay
over depth and sediments in the water column. Given the geomorphology
and water clarity in fore reefs, our results indicate that this part of the
South Pacific represents a promising bioregion for the identification and
research of high scleractinian cover in MCEs (as in Pichon, 2019; Rouzé
et al., 2021).

The positive outliers reflected the morphological dominance observed
in the overall coral community composition over depth, with laminar mor-
phologies almost exclusively covering outlier assemblages at 90 and 120 m
and at least six ‘hotspots’ at 40 m and 60 m. Although at first glance these
could appear to be monotypic stands, laminar-dominated outliers were
diverse, comprising between 8 and 22 scleractinian species (SBox 1 and
2). Some of the most common scleractinian species at steep slopes or
near-vertical walls were laminar Leptoseris solida, L. hawaiiensis,
Echinophyllia aspera, Oxypora echinata and Cycloseris wellsi, whereas
P. “speciosa” and Porites rus were associated with more moderate slopes at
40 and 60 m. The dominance of large laminar/plating corals at mesophotic
depths has been previously reported in the Caribbean and the Indo-Pacific
(Bouchon, 1983; Faure and Laboute, 1984; Hoeksema et al., 2017; Hopley
et al., 2007; Kahng et al., 2014, 2010; Kahng and Kelley, 2007; Kühlmann
and Chevalier, 1986; Pyle et al., 2016; Rooney et al., 2010; Zlatarski and
Estalella, 1982), and hypothesised to be related to potential physiological
adaptations inherent to the host (Kahng et al., 2020), or acquired through
symbiosis (Gonzalez-Zapata et al., 2018). For example, the observed skele-
tal geometry in laminar Leptoseris and Montipora species confers a higher
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efficiency in light harvesting (Kahng et al., 2012), promoting moderate
growth rates of these genera (Kahng et al., 2020), which could result in ad-
vantagewhile recruiting atmesophotic depths. Further, potential symbiosis
with the endolithic green algae Ostreobium, observed as part of the benthic
community in some of the positive outliers (e.g., outliers III, IV, VII, VIII, IX;
Sup. Box 1), could benefit the success of these species at mesophotic depth
by providing fixed carbon (Fine and Loya, 2002; Iha et al., 2021; Rouzé
et al., 2021). Additional research is necessary on potential coral ecological
interactions with other benthic groups.

Our identification and characterisation of positive and negative outliers
highlight the unique and heterogeneous characteristics of MCEs and
advances in elucidating some factors that could favour high coral cover at
mesophotic depths. Studying the biological processes that could contribute
to the observed high scleractinian cover (i.e., connectivity, competition,
susceptibility to bleaching and diseases, suitable geomorphology,
photophysiology performance) will be critical in advancing our under-
standing of MCEs, and in particular the potential role (s) of MCEs in overall
coral reef resilience. Further consideration of negative outliers will contrib-
ute to predicting habitats unlikely to harbour mesophotic coral communi-
ties as well as to explain the heterogeneity observed in MCEs across
spatial scales. Improving our predictive capacity to identify high coral
coverMCEs requires a worldwide effort to capture the high spatial variabil-
ity among sites (shown across outliers in this study), regions and the diverse
life histories across coral species. While coral reefs continue to be threat-
ened by climate change (Bellwood et al., 2019; Hughes et al., 2018;
Souter et al., 2021), comprehensive characterisation andmonitoring efforts
in MCEs are crucial for their incorporation in the conservation planning of
tropical coral reefs (Bridge et al., 2013; Hernandez-Agreda et al., 2022;
Rocha et al., 2018). By establishing a baseline for the geographical and tem-
poral monitoring of MCEs in French Polynesia, we hope to provide a robust
foundation for studying these ecosystems and ultimately enable their
effective incorporation into conservation mangement efforts.
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